Cameron Hummels


Cameron Hummels



About me

As a postdoctoral researcher in astronomy at the University of Arizona I spend most of my time using computer simulations to model how galaxies form and evolve over the age of the universe, but I also perform research in other areas of astronomy. I have used the Arecibo radio telescope to observe fuel for star formation in other galaxies, and I have investigated how explosions occur on the surface of the Moon. I contribute code for the Enzo hydrodynamics simulation code and the yt visualization and analysis suite.

I am very involved in Astronomy Outreach, working previously at Columbia University as Director of Outreach, and having helped build up their program to be one of the premier astronomy public education programs in the country.

Outside of astronomy, I enjoy experiencing new cultures, long-distance bicycle tours, backpacking, learning new languages, and racing in triathlons and other endurance sports.

My Curriculum Vitae
ADS Search

My Research Topics

Computational Galaxy Evolution

I investigate how galaxies evolve over cosmological timescales and the forces responsible for this evolution. My research goals focus on understanding the nature of star formation and stellar feedback in galaxies, the primary mechanisms by which gas, energy, and metals are injected into the intergalactic medium. These processes are crucial to the dynamical and chemical evolution of galactic systems, yet they are still not currently understood in computational and observational contexts.

Simulated Disk Galaxy from Cameron Hummels on Vimeo.

Circumgalactic Medium

One new avenue for comparing observations and theoretical predictions of galaxies is the circumgalactic medium, the vast reservoir of tenuous gas surrounding each galaxy out to several hundred kiloparsecs. Observations are now being made of the state of this gas, and they are providing a very useful tool for understanding the flow of material and energy into and out of galaxies. I was awarded a Hubble Space Telescope Theory Grant to investigate the nature of the CGM using computer simulations to better understand its origin, evolution, and to explain some of its peculiar observational signatures. Please visit this page for more information on my recent results as well as downloadable data.

AGORA Simulation Comparison

I am involved in the AGORA Galaxy Simulation Comparison Project an effort to directly compare results from galaxy simulations produced by the leading astrophysical hydrodynamics codes. The goal of the project is to identify what characteristics and behaviors of simulated galaxies are real and which are simply products of the hydrodynamical methods employed in various codes. I am the leader of the working group investigating the characteristics of L* galaxies in cosmological environments, which will produce synthetic observations to directly compare against each other and real observations. This study should provide insight into why galaxies behave the way they do and what physical processes (e.g. what star formation and feedback prescriptions) are most responsible for producing realistic galaxy analogs.


I develop and use the adaptive mesh refinement hydrodynamics code, Enzo, to perform cosmological simulations following the formation and evolution of individual disk galaxies to present redshift. I am investigating new subgrid models in these simulations to better prescribe the detailed physics on small scales, specifically star formation and efficient stellar feedback. With better models for these two processes, we may be able to avoid dynamical pitfalls like the angular momentum problem and produce galaxies consistent with observations.


I am one of the core developers for the yt project, a software suite for visualization and analysis of computational hydrodynamical datasets. I'm contribute to the project in many ways, but my focus is on halo mergers and tracking through cosmological volumes, volume rendering and visualization, and developing methods for building realistic synthetic observations from simulation outputs for direct comparison against observations.


I am a collaborator and observer on the Galex Arecibo SDSS Survey (GASS), a multiwavelength project survey that targeted 1000 massive nearby galaxies. GASS was the first statistically significant sample of massive transition galaxies with homogeneously measured stellar masses, star formation rates and gas properties. It provides a means of understanding how galaxies react to their environments and their cold gas content, and why the bimodality in the galaxy color-magnitude diagram exists.

Transient Lunar Phenomena

Lastly, I had a brief foray into planetary science a few years ago, investigating how eruptions of gas out of the interior of the Moon would impact its surface. These models predicted sub-surface lunar ice with similar observational characteristics to ice discovered later that year by NASA mission scientists.

My Publications

Public Education

One of our duties as scientists is to share our knowledge of nature with our communities. I was previously very involved in Public Outreach in the Astronomy Department of Columbia University, having been the director of the program for six years, and helping to build it up to one of the premier astronomy public education programs in the country.

I organized, lectured, and volunteered at most of the Columbia Astronomy Outreach events including our biweekly public lecture series and stargazing, Harlem Sidewalk Astronomy, Science Fiction vs Science Fact Film Series, Family Astro Events, and many school group visitations. In addition, I am one of the founding members of the Rooftop Variables scientific mentoring program, whereby graduate students mentor local high school science teachers and help them in designing astronomy curricula and in starting up astronomy clubs at their respective schools around New York City.

During the International Year of Astronomy (2009), I was awarded the position of NASA Student Ambassador to New York State & City. As part of this role, I organized an outdoor astrophotography exhibition in the middle of Columbia's campus, which brought more than 10,000 attendees from around the city and state. I also helped to design and record several educational podcasts as part of the 365 Days of Astronomy project.

I've been featured in numerous media discussing astronomy and education including: National Public Radio, Science Careers Magazine, The Village Voice, and the Brian Lehrer Show. It is my hope that by continuing to bring the beauty of science to a larger audience, we will not only touch individual lives, but aid in improving society as a whole.

Personal Pursuits

When I am not doing astronomy, I like to keep active mentally and physically. I have conducted several long-distance bicycle tours, traveling from New York City to Niagara Falls and biking along the American West Coast. I regularly train and participate in endurance sports like cycling races, marathons, and triathlons. In 2011 and 2013, I was ranked as an "All American" duathlete/triathlete for having finished top-ten nationally in my age group, and I qualified to represent Team USA at the world championships. In 2013, I completed my first Ironman.

I love international travel since it means I get to meet new people, experience new cultures, and learn new languages. In preparing for these travels, I have tried my hand at numerous languages both formally and informally. I find that it's always best to have some language preparation prior to traveling to a particular region, as it enables so many other opportunities and provides more insight into a culture. I have tried to photodocument my travels and post the results online in a single location, but as of yet, they are strewn between Facebook albums, Google Plus albums and an old blog.

In line with my love of astrophysics, travel, public education and challenging experiences, I have applied to NASA to become an astronaut. I hope that one day I will have the opportunity to aid in humanity's exploration and understanding of our little neighborhood in this vast Universe.